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ABSTRACT
Global navigation satellite system real-time kinematic (GNSS-RTK) positioning is today a key technology for survey and
mapping applications. To extend the capability of GNSS in difficult environment, a tight coupling between GNSS-RTK and an
inertial navigation systems can greatly improve the results. This solution is adapted to small GNSS outage under bridges and
in urban canyon for automotive survey for instance. If the time spent in GNSS outage is too long or if the kinematic of the
survey is too weak, the GNSS inertial solution can be compromised, due to high navigation errors, and ultimately, impossibility
to align heading angle at initialization. This occurs most often for pedestrian survey where the GNSS conditions are worst and
dynamics are low. Some solutions on the market propose a LIDAR based SLAM to overcome the limitations of INS/GNSS.
However this solution has a great impact on the mapping solution in terms of bill of materials costs, and power consumption.
Indeed, two LIDARs are generally used in this case : one dedicated to SLAM and one dedicated to point cloud generation.

This paper presents an innovative solution to overcome the GNSS/INS limitations, whereas minimizing the system complexity
by using a tightly coupled GNSS/INS solution, coupled with our monocular visual inertial SLAM system (DVM). This solution
is capable of initialization in a few seconds, and is very reliable in the long term. This vision/INS/GNSS coupling increases
the overall RTK fix rate and broadens the availability of high precision navigation solutions under challenging conditions. In
addition, our visual SLAM system can optimize the full visual graph and achieve cm accurate positioning on the full path in
indoor, benefiting from GNSS points at the entrance and exit of the indoor survey, as well as visual loop closure. For more
flexibility and accuracy, our visual graph optimizer can estimate the intrinsic and extrinsic calibration parameters of the camera
using only a few GNSS points, allowing easy third-party camera aiding. Finally, visual inertial SLAM post-processing proposes
an alternative to LIDAR SLAM that does not suffer from poor geometry issues. Going further we will assess the performance
of our inertial visual GNSS solution by generating a LIDAR point cloud and analyzing the consistency of the point cloud.
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I. INTRODUCTION
Nowadays, the LIDAR (Light Detection And Ranging) has become an indispensable technology for high precision mapping.
The applications for LIDAR mapping are numerous, from architecture and cultural heritage to forestry and agriculture. For
a complete reconstruction of an area to map, the LIDAR must often be deployed in areas only accessible by the pedestrian.
This leads to the emergence of backpack solutions. Whereas point cloud density and map completeness increases, the accuracy
of the point cloud has to deal with the difficult motion profile of the pedestrian and more difficult GNSS conditions. Typical
scenario of a backpack survey is a continuous outdoor and indoor mapping of a building. The survey lasts from thirty minutes
to several hours. The surveyor can also use a kick scooter or a Segway to map a larger outdoor area more easily.

The surveyor has often access to a snapshot of the map in real time to check if all the area has been correctly mapped. However,
assessing the quality of the point cloud in real time is more difficult. Typical metric for assessing the quality of the point cloud
is the ”best fitting-plane distance”. However, this metric does not give the precision of the full model [1]. The precision of the
full model is mostly defined by the GNSS coverage during the survey. Different solutions are available to the surveyor to have
a good GNSS coverage:

• If the surveyor wants to quickly process its acquisition, he needs an RTK setup with a close enough base station.

• If the surveyor can wait a little, a third party GNSS/INS post-processing software such as Qinertia can process the PPK.

• If the area to map is too far from a base station, the trajectory can still be post-processed using a Virtual Base Station
system that Qinertia also provides [2]. This technology allows arbitrary large survey with continuous global position.

II. RELATED WORK
1. Backpack Mapping
Several commercial Lidar backpack systems have been developed in the past 10 years [1]. Hand-held systems usually do
not support GNSS, whereas most backpack system support GNSS. Some systems only work in GNSS covered areas. A few
backpacks use Dual GNSS antennas. As the two antennas need to be separated enough, the system becomes a little cumbersome
and the dual antennas are removed before entering a building [1]. During large GNSS gaps, the trajectory is usually recovered
using LIDAR SLAM. In our case, we use visual inertial SLAM. With the difficult motion profile of the pedestrian, the navigation
initialization is a challenge itself. It is usually done by comparing the trajectory generated by a local SLAM with the GNSS
points. As SLAM is able to yield a local consistent trajectory, it can be aligned by a few GNSS points at start using Singular
Value Decomposition (SVD).

2. Visual Inertial GNSS Slam
a). Visual Inertial SLAM

An overview of visual inertial SLAM and detailed descriptions of high performance visual inertial SLAM systems can be found
on ORB-SLAM3 [3] and on DVM [4]. Lately [5] pointed out several problems on the KITTI odometry dataset [6]. Besides the
algorithms [5] developed to solve these problems, it underlines the importance of the sensor setup. Hence great care should be
taken for the rigidity of the setup if stereo cameras are used [5]. Fixed focal length should be used [7]. Raw images should be
available [5] [4] [3].

b). Loose Visual Inertial GNSS Coupling

Loose coupling between visual-inertial-SLAM and GNSS allows to obtain a globally positioned trajectory. Since SLAM is very
reliable, it can afford to take only the accurate and robust GNSS points. Hence a first improvement for GNSS loose coupling is
to reject all non RTK-fix GNSS points.

c). Tight Visual Inertial GNSS Coupling

However, sometimes the system operates in such a harsh environment that the SLAM system would benefit from additional
satellite fixes. To do so without robustness issue, it becomes necessary to constrain the GNSS solution beforehand. This can be
done with tight coupling. In tight coupling the GNSS solution will be sought in an area defined by the filter prediction. Then
two paradigms are available:

• The optimal formulation adds the ambiguity states to the filter. GVINS [8] based on VINS Fusion [9] demonstrates tight
coupling using 1, 2, and 3 satellites only.

• The federated filter feeds the GNSS estimator with the current filter prediction. This filter is sub-optimal, but it is enough
to improve the solution over a loosely coupled strategy [10] [11] [12]

Our strategy will be similar to the federated filter.
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III. VISUAL INERTIAL GNSS PROCESSING
1. Visual SLAM
The role of SLAM is to find features and localize the images for later global optimization. The features that are associated
during SLAM are the same that are used for global optimization. Likewise the SLAM trajectory is a starting point of the global
optimization. The SLAM is therefore a critical part for the accuracy of the post-processed solution. We use DVM [4], a Sliding
Window Filter (SWF).

SWF are nowadays the most powerful methods for visual odometry. The filter behaves at the same time like a nonlinear
optimization and an extended Kalman filter. This allows to use all information available at a time, having always the best
linearization point possible. It works as follow: On every images, features are detected on high gradient location. Points of
interest are associated on up to 10 other images using normalized sum of squared difference. About 1000 points are detected on
a 1Mp image. The first 10 images are processed using gyrometer aided visual SLAM. Then, a local optimization is done to find
accelerometer bias, gravity direction, speed and scale. Finally the inertial tight coupling begins. The sliding window system is
composed of 6 keyframes that are continuously optimized and 4 fixed keyframes that are chosen among old keyframes allowing
opportunistic loop closing. This loop closing strategy can be classified as mid-term data association [3] allowing zero-drift in
already mapped areas.

As a critical part of the workflow, we improved the initialization robustness of our SLAM system by introducing a smooth
transition between the gyrometer aided SLAM and the inertial tight coupling SLAM. We also improved the long term robustness
by preventing the inertial biases to drift too much. The assumption is that the in run biases should never exceed the initial biases
uncertainty. To model this phenomenon, we use a correlated noise to model the inertial biases. The rate random walk is
unchanged but the correlation time is tuned so that the peak of the correlated noise on the Allan variance equals the initial bias
uncertainty.
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Figure 1: Structure of our SLAM system with 10 keyframes among
them 4 are fixed. At each local bundle adjustment the state variables
of the landmark (their inverse depth) are subtituted using the Schur
Complement to obtain a small and dense information matrix.

L L

PP PP P

v

b

etc

P

L

GNSS point

Reprojection factor in the observing keyframe

Optional stereo factor in the anchored keyframe

Prior factor

L

P

v

b

etc

Landmark

Keyframe pose

IMU velocity

IMU bias

Optional state variable
(calibration, imu alignment..)

PPPP

Inertial 
factorP

v

b

v

b

P

LL

P

L

Inertial 
factor

Figure 2: Structure of our global bundle adjustment system. At each
global bundle adjustment the state variables of the landmarks are sub-
stituted using the Schur Complement to form a big and sparse infor-
mation matrix. Resolution is done using a conjugate gradient with
block-diagonal preconditioning. In order to reduce the problem size
we use only 1 inertial state every 5 visual states, assuming that the
inertial preintegration does not drift too much after 5 images.

2. Generalized IMU Preintegration
One of our main contribution is visual inertial global bundle adjustment with generalized IMU preintegration. That means that
the inertial postprocessing is not limited to basic inertial states such as accelerometer bias and gyrometer bias but it can easily
be extended to take into account more errors such as gyrometer scale factor and accelerometer scale factor for example. It is
also capable of camera calibration which is a typical feature of photogrammetry software.

For global bundle adjustment, a sparse non linear least square is build containing the whole trajectories and variables to estimate.
As it optimizes the full trajectory at onces, it is incompatible with the usual Extended Kalman Filter for inertial Filtering
which works in a sequential manner. Imu preintegration have recently been successfully used in visual inertial local bundle
adjustment [13] [3] but it is limited to simple IMU model and one inertial parameters per images. In our case, we use a general
IMU model and fewer inertial parameters than images, yielding convergence speed up and robustness improvements (see Figure
2). To reach that goal we pose the inertial factor as a function of a local inertial state that predicts a few positions and attitudes
ahead and the next inertial state:
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h(pk,bk,vk, pk+1...pk+5,bk+5,vk+5) = g(pk,bk,vk)− (pk...pk+5,bk+5,vk+5) (1)

with pk the pose at time k, bk the inertial biases at time k and vk the speed at time k.

To use it in the global bundle adjustment, the covariance, gradient and value of h needs to be computed. This is possible by
reusing the jacobian and propagation procedures of a conventional Extended Kalman Filter [14]. Hence g in equation 1 and its
gradient is computed by stacking successive EKF propagation results from a classic EKF prediction function f [15].

g(xk) =
xk +

∫ k+1
k f (xt)dt
...

xk +
∫ k+5

k f (xt)dt
(2)

G(xk) =
Π

k+1
k (I + ∂ f

∂x (xt)dt)
...

Π
k+5
k (I + ∂ f

∂x (xt)dt)
(3)

The covariance of g is recovered the same way the prior is computed in figure 1 using the variable state dimension filter
theory [16] [4]. Its inverse will give the weight of the observation in the global bundle adjustment. Once these quantity have
been computed, the generated information matrix and error must be carefully added at the right indexes to the global sparse
system.

3. GNSS Tight Coupling

Figure 3: Scheme of the processing workflow in case of difficult GNSS conditions.

The post processing alternated between GNSS aided visual inertial global BA and visual SLAM aided PPK. Thus the position
is iteratively refined. Feature position and imu biases are improving at the same time as GNSS ambiguity are resolved and
refined. The inertial GNSS tight coupling is done by a modified version of SBG Qinertia software that is capable of taking the
positionning of the visual SLAM as an additive aiding.

4. Performance Assessment
a). Difficult GNSS Condition

This test focuses on increasing the available RTK fix rate. This experience shows the efficiency of a tight coupling strategy
over a loose coupling strategy. We did a full size test of 30 minutes (see Figure 4). The backpack went in an old town with
narrow streets, passages with stairs, where townhouse are often blocking the sky. But the most difficult part was done along a
block of flats with balconies, this corresponds to the bottom left corner of the trajectory. Analysis of the solution over a classic
GNSS-inertial tight coupling in figure 5 shows that vision helps to get the strategic GNSS fixes that are necessary to have a full
centimetric trajectory in such harsh GNSS conditions.
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Figure 4: Trajectory of a difficult GNSS condition survey of 30 minutes. The distribution of PPK fixed of our proposed solution is shown in
yellow. The start and end of the survey were done in good GNSS conditions but the biggest part of is done in harsh GNSS conditions.

Figure 5: Fix rate using GNSS-inertial tight coupling (Top), and using visual GNSS-tight coupling (bottom). Our proposed solution increases
the fix rate by 4.5% over GNSS-inertial tight coupling. Only the fix rate in the difficult areas is shown. Our methods improve the fix quality
on several points and it managed to fix the GNSS in the middle of long GNSS-fixed outage. These fixes in middle of outage are strategic and
allow a centimetric accuracy in areas where it was not possible. Still there remain a big gaps with no fix that is easily associated to the area
of the bottom left corner of the trajectory in Figure 4. The failure of getting a fix in the middle of this gaps can be caused by the too difficult
GNSS condition or the quality of visual SLAM over this long 5min gaps being not precise enough for GNSS fix. The next section will assess
the recovery precision of such long gaps.
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b). Long GNSS Outage

Figure 6: Trajectories of the GNSS outages tests. From left to right: residential test, in town test, parking test.

Figure 7: GNSS gaps simulation, From top to bottom: Residential dataset, in town dataset, parking dataset. The GNSS gaps are represented
by the horizontal GNSS standard deviation in red and purple on the graphics.

This test will assess the capability of indoor positioning, where the GNSS is completely loss during a significant time, a time
necessary to carry out an indoor survey for example.

We simulated on three datasets 5 minutes GNSS gaps, or a 450m long GNSS gap.

• The first test was done in a residential area with some narrow passages, and no loop closing. We had the lowest perfor-
mance compared to the other tests with 50 cm maximum error (see Figure 7). This corresponds to 0.11 % of the traveled
distance.
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• The second test was done in town with no loop closing. The maximum error reached 35 cm (see Figure 7). This
corresponds to 0.08 % of the traveled distance.

• The last test was done in the parking of SBG systems with some loop closing available. Vision seemed to take advantage
of loop closing as the maximum error dropped to 20 cm (see Figure 7). This corresponds to 0.05 % of the traveled
distance.

IV. LIDAR MAPPING
1. Acquisition Platform
The primary goal of our experimental setup was to compare several sensors for GNSS aided visual inertial navigation. We
wanted a compact design that can be either embedded by a pedestrian, or carried by a vehicle. To demonstrate a practical
application of such a solution, we embed a payload: A Velodyne LIDAR VLP-16. Hence our backpack is designed for
simultaneous acquisition of several cameras and different IMUs. We embed two SBG IMUs (see table 1) and tested several
cameras (see Table 2).

Table 1: IMUs.

INS Picture Grade GNSS Receiver Connectivity

Ellipse-D 7°/h bias
instability 2 ublox zed-f9p 1 Serial port /

1 trigger

Quanta Micro
Evaluation Kit

0.8°/h bias
instability 2 ublox zed-f9p

3 serial port /
2 triggers /

ethernet port /
PTP / CAN

Table 2: Cameras.

Camera Picture Resolution Characteristics Connectivity

Intel D455 1.0 Mp x 2 color
global shutter 90° FOV(H) USB3

Intel T265 0.68 Mp x 2 gray
global shutter 170° FOV(H) USB3

Mynteye S 0.36 Mp x 2 gray
global shutter 110° FOV(H) USB3

ZED 2 2.2 Mp x 2 color
rolling shutter 110° FOV(H) USB3

Lucid Triton
camera

5.0 Mp color
global shutter @ 110° FOV(H) Gigabit

Ethernet

E-con see3cam
20cug

2.0 Mp gray
global shutter @ 150° FOV(H) USB3

Most cameras exhibit severe limitations:

• Some cameras emit lots of Electro Magnetic Radiations, jeopardizing GNSS. Schielding becomes indispensable.
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• Rolling shutter cameras cannot be approximated by global shutter cameras. Whereas rolling shutter cameras can be
approximated as global shutter for UAV photogrammetry. In case of pedestrian SLAM a dedicated algorithm for rolling
shutter cameras seems mandatory.

• Effective resolution of color cameras is cut by 4 due to demosaicing. Redhibitory for small resolutions.

• Some cameras reached end of life and are no longer produced.

We finally decided to concentrate our tests on the most accurate setup we had: Quanta Micro with see3cam 20CUG. This setup
is also of great research interest compared to available public dataset in the literature in term of ground truth availability, image
resolution and IMU grade. We have a survey grade IMU, which provides accurate attitude to output quality LIDAR points
cloud. The performance of the selected IMU is better but still comparable to the one available in the public dataset TUM-
VI [17]. The camera selected has the biggest resolution among the Omnivision automotive grade monochrome global-shutter
sensor. Which makes it cheaper and probably more precise than the industrial IDS uEye camera used in TUM-VI [17], since
the resolution is bigger. Finally the ground truth is available on all open sky pieces of the trajectory. This allows us to simulate
GNSS gaps and check angular and scale consistency on the long term. Such error cannot be checked on a limited ground truth
such as the TUM-VI [17] one.

Table 3: Comparison of our backpack dataset with the hand-held TUM-VI dataset [17].

Dataset Picture Gyro Bias
Instability Camera Ground Truth Length per

Log

TUM VI [17] 8°/h
1.0 Mp x 2 gray
global shutter

150° FOV

1mm in static
only at the

beginning and
the end

up to 30 min

Ours 0.8°/h
2.0 Mp x 2 gray
global shutter

150° FOV

1cm in dynamic
on the full open
sky trajectory

up to 1 hour

We use a plastic suitcase for our setup as shows the picture in table 3, it has several advantages:

• It brings the rigidity to the sensor set.

• It is very modular, can easily be adapted to new sensors.

• The suitcase can either be carried as a backpack or attached to a vehicle.

• It protects the sensors inside and can be made water proof.

Our backpack can embed various batteries adapted to the current sensors in use. It embeds a laptop for real time GNSS aided
visual inertial SLAM and for logging the data coming from all the different sensors.

2. LIDAR Calibration
Yet an additional work needs to be done to exploit our payload. The extrinsic calibration between the LIDAR and the INS is
needed.

a). Related Work

Lidar-INS calibration has been well studied in the literature however manual procedures continue to be used. In a backpack
context, [1] measures the lever arm from a blueprint and estimates the boresight angle using a comparison between INS gravity
direction and floor normal direction with manual selection of ground floor. Several automatic methods for INS Lidar calibration
use point to plane optimization. [18] automatically selects adaptive size planar patches using a quatree. [19] detects roofs in UAV
lidar scans and use these roofs for point to plane optimization. Iterated Closest Point on plane also showed good performance
in lidar SLAM context [20] [21]. This method is very effective in the general lidar context.
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Parametric modeling of the planes to fit was used in [22], greatly increasing the complexity of the algorithm. [22] still ex-
perienced problems when trying calibration in a soccer-field, where the geometrical information is low. They also failed to
calibrate an hypothetical lidar range offset. Hence, more care should be taken on other aspect of the algorithm such as plane
classification, point association and outlier rejection.

b). Proposed Algorithm

Lidar calibration has been mostly explored in UAV context. We implement such a point to plane based boresight and lever
arm estimation in a backpack context. We solve a non linear least square that optimizes the lever arm and boresight angle in
order to minimize the distance of points to a plane. Instead of plane parametrization, we take into account the average plane
displacement that depends of the optimization parameters (boresight and lever arm). Hence our non linear least square is:

dx =

(
∑
k

HT
k W−1

k Hk

)−1(
∑
k

HT
k W−1

k hk(x)

)
(4)

With hk = fk(x)− fi∈P(x) and Hk =
∂ fk
∂x (x)−

∂ fi∈P
∂x (x) and fk(x) the function that transform the point number k to the georefer-

enced frame using the boresight and lever arm as parameter. Such function can be found in [23]. This function is projected on
the normal of the plane the point belongs to.

Our plane detection and point to plane association is very effective, hence we can reassociate points and planes at each Gauss
Newton iteration. These steps are repeated until convergence:

• Store georeferenced points in a grid of about one meter square.

• Compute barycenter and SVD of the covariance of the point cluster in each square meters in order to determine if a
cluster is a plane and where is the plane.

• Compute a least-square iteration with dynamic point rejections based on quadratic loss function [24].

It usually converges within 5 iterations. During the convergence, one can appreciate the number of clusters classified as plane
increasing, and the thickness of the planes decreasing as shown in figure 8.

Figure 8: Point cloud of a water tank before calibration (left) and after calibration (right). Units in meters. The calibration parameters
converged within 3 iterations. At the first iteration 2817 planes were used and at the last iteration 4965 plane were used. The boresight angle
was corrected by 3° and the lever arm by 20cm. The point cloud used for calibration is plotted at the beginning of the paper.

V. DISCUSSION
When we look at the drift rate of our visual inertial SLAM, we have 0.1% to 0.05% of drift, this is much lower that the drift rate
there are on the top ranking algorithms of the KITTI automotive visual odometry dataset [6] (1% to 0.5%). We can think that this
can be due to to the automotive motion profile, introducing a high optical flow and blur. One can think of the absence of IMU
data to help vision. However, from our experience running DVM on KITTI, the residuals are low, indicating an absence of blur
and the motion profile of the automotive alleviates the need of an aiding sensor. Running the pedestrian visual-inertial dataset
TUM-VI turned out to be more demanding. Together with the recent discovery of stereo rig rigidity issues and calibration
issues [5] on the KITTI dataset, we can hope to reach a much lower drift rate with an automotive setup that does not suffer from
mechanical issues. This would broaden the applications of our proposed solution.
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VI. CONCLUSION
This paper presents a tight visual inertial GNSS processing able to provide a precise enough trajectory for mapping applications.
We demonstrated that a single camera can do the work of Lidar when it comes to Simultaneous Localization and Mapping. We
also showed that a tight coupling approach can help to recover a global centimetric trajectory thanks to the recovery of GNSS
fixes in strategic areas of the trajectory. We point out that a camera typically used for object detection or collision detection
is most of the time not suitable for visual SLAM. However, we find reliable, high-quality, and inexpensive cameras among
automotive grade sensors that are very suited to visual SLAM. This makes our proposed solution very appealing.
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