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ABSTRACT 
 
Finding alternative technologies for GNSS-denied environments is a key to extend the capability and robustness of autonomous 
vehicle and mapping application. A solution to the problem is vision-simultaneous-localization and mapping. Since cameras are light 
weights, robust and passive sensors, they are leading candidates for GNSS-denied environment technology. Accuracy and robustness 
are the two main concerns regarding these technologies. While high accuracy is achieved thanks to loop-closing (correct position 
when crossing places that where already visited) [1], robustness is achieved thanks to an accurate short-term visual odometry. Hence 
SOFT-SLAM [2] the currently top-ranking stereo vision methods on KITTI benchmark [3] focused on pure visual odometry [4] 
before to deal with Simultaneous Localization And Mapping.  
 
In this paper we present a novel algorithm for fast and robust stereo odometry based on hybrid stereo and monocular algorithm. First, 
interest points in the images are selected using circular matching of features between left and right, current and next images, using a 
sparse feature descriptor described in Stereoscan [5]. Then rotation and translation between two consecutive poses are estimated 
separately. A mean square is used for translation estimation whereas a parametrization of epipolar constraint similar to [6] is used 
for rotation estimation. Experimental results show that the proposed algorithm achieves state of the art translation error on KITTI 
benchmark using the KITTI evaluation metric [3]. According to this metric, it has already lower mean translational and rotational 
error than state of the art SLAM algorithm such as ORB-SLAM2[1] while our algorithm is a pure visual odometry algorithm. We 
also tested our algorithm in inertial aided situation using the EuRoC MAV dataset[7] where we also achieved competitive results. 
Our algorithm processes a frame in 0.07s on average on a single core at 3Ghz. This allows real time odometry outputs. 
 
OUTLINE 
 
First, we will present the feature detection and matching algorithms, next we will set the equations of stereo odometry and monocular 
odometry. Then from optimal state estimation theory, using a general formulation of Extended Kalman Filter [8], we show how an 
optimal non-linear least square is obtained, for both problems of epipolar constraint (monocular motion estimation) and stereo 
reprojection constraint (for stereo estimation). This optimal formulation gives us at the same time a metric to filter outlier using the 
chi-square test and a suitable covariance estimation to couple the system with other sensors such as inertial data or GNSS data in 
difficult GNSS situations[9]. We also present or visual inertial coupling strategy and further visual odometry improvements. 
 
Regarding integrity and robustness, the total uncertainty of our odometry system is propagated during the vehicle travel thanks to an 
Extended Kalman filter. Hence the predicted accuracy is well estimated. Confidence ellipses are obtained during the whole path and 
correspond to the observed error relative to the ground truth. Our main contributions are: 

 An overall deterministic algorithm that do not uses randomized process to converge: Outlier rejection is based on a chi2 test 
using prior estimate and a constant 30% outlier removal using chi2 test on posterior estimate. 

 A New monocular algorithm based on an epipolar constraint parametrization and accurate statistical formulation, leading 
to a precise, robust and fast monocular algorithm that boosts overall stereo visual odometry accuracy. 

 
RELATED WORK 
 
During the past year, several algorithms were developed to solve the problem of visual Odometry or visual Simultaneous Localization 
and Mapping. 

 Frame to Frame odometry 
A simple frame to frame algorithm is enough to give good results in Stereo Odometry. Here only the delta pose (a rotation and a 
translation) between two frame pair is computed in a sequential manner. The least squares with Random sampling Consensus [10] 
(RANSAC) is usually used to solve this problem. Several minimal sets of features are tested, and the best set is chosen. For stereo 



odometry, 3 pair of points are sufficient. Several improvements can be found in the literature such as feature tracking for outlier 
removal [4]. An important improvement is to use a separate estimator for rotation based on monocular odometry[11][12]. Monocular 
frame to frame algorithms only gives the rotation and the direction of translation but not the scale. In practice these algorithms are 
very precise for rotation estimation and can be used to improve the angular estimation in stereo visual odometry system. Monocular 
frame to frame algorithms serve also for initialization in more complex SLAM system[1]. Most of these frame to frame algorithms 
use RANSAC to find inliers. There are the 8 points algorithm[13] for monocular which relies on singular value decomposition; and 
the 5 points algorithm [14] which relies on solving a 10th degree polynomial. However we will show that a parametrization of epipolar 
constraint based on [6] yields a state-of-the-art precision at a minimal computation cost without relying on randomized process. 

 Sliding window filter 
Another class of algorithm are Sliding window filter [15]. These were initially developed for monocular odometry since frame to 
frame monocular algorithms cannot track the scale. Here the position of the features (~2000 for DSO[16]) enters the minimization 
system along with a few frames (~10) which gives a big optimization system. Hopefully, since the system remains sparse it can be 
easily solved using block inversion. Several parametrizations are available for feature position: either a 3d position in space[1], or 
only the inverse depth of the feature in a reference image[17]. Again, since monocular algorithm gives often better angular estimate 
than stereo algorithm, their extension to stereo odometry yield good results [18][1].  

 Graph SLAM 
Graph Slam [1] system is a way of solving the full system without neglecting correlation between variables. This system is used for 
relocalization and loop closing. It corrects the estimate when the camera sees a place that has already been visited. These systems 
yield best precision in closed environments where the camera revisits a lot of place. Here, since more correlation between states are 
kept than for windowed SLAM, the system is less sparse, but still sparse. The Preconditioned Conjugate gradient method is used to 
solve this problem [19]  which is a little slower than sliding window systems. 

 Inertial coupling 
In more recent years, more research on Visual Inertial coupling have been done[20][21][22][23]. Indeed, the inertial coupling 
extension of the latter three SLAM methods have been done. Inertial coupling often gives more robustness and a better precision 
while being lightweight. Moreover, this extension is mandatory for monocular slam system since scale cannot be observed (except 
learning depth from previous data [24]). There are also several visual odometry dataset available such as the EUROC-MAV dataset 
[7]  
 
FEATURE MANAGEMENT 
 
Our visual odometry algorithm relies on detecting and associating interests points in the image such as corners and blobs. This is a 
well-known starting point for a lot of algorithms. First one detects high gradient points in the images, then tries to associate them on 
the other images using a similarity or dissimilarity measure between these points. 
 
Feature detection 
 
To detect these points, one can use corner and blob convolution[5] or Harris Corner detector. The two methods are based on gradient 
image. Whereas convolution tries to find a matching pattern, Harris Corner detector will detect if a feature is not a pure line and can 
be safely located in two dimensions. Harris Corner simply computes the image gradient covariance around the interest pixel, and if 
the determinant of the covariance is big enough, the feature will be safely recognizable. These detectors give a quality value for each 
pixel of the image. Then one can divide the image in small blocks and take only the best pixel in each blocks. This process is 
commonly referred as non-maximum suppression. Then, having one potential feature in each blocks of one image and another, one 
will try to match them between the image using a similarity or dissimilarity measure. 
 
Dissimilarity measure 
 



Figure 1: position of the pixels used for the descriptor. There are 16 pixels distributed in a sparse manner 
in a 11x11 window around the feature center. The descriptor is the concatenation of the intensity of the 
smoothed x gradient and y gradient (ie. sobel transform) at these pixel positions. 
 
We use the same feature descriptor as Stereoscan [5]: To measure similarity between pixels for matching, 
a descriptor vector is defined. The descriptor vector is composed of 32 pixels of the spatial derivative of 
the image situated in a sparse manner around the interest point. Then to measure the distance between 
two descriptors, we compute their normalized Sum of squared differences (NSSD). We keep the best 
match among the feature tested. 
 

 𝑁𝑆𝑆𝐷(𝑑ଵ, 𝑑ଶ)  =  
‖ௗభିௗమ‖మ
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Circular matching 
 
By searching the best match in a circular manner between the left and right and the current and next frame, reliable stereo features 
are detected. From the left and right image feature association, one can compute a first feature depth, then one can reproject the 
feature position using the motion prior to have a more precise search zone for matching between different times. This search zone 
depends on the motion prior state and covariance. The same process is done backward. If the last pixel found is the same that the 
first, the circle is closed, and the circular matching succeeded. 

 
Figure 2: Circular matching. 

 
KALMAN FILTER AND LEAST SQUARE 
 
Stereo motion estimation 
 
Here we focus on the update part of the Kalman filter. For this part, the only model we need is the observation function. For the 
stereo problem, we write an observation as the observation of the feature position from one stereo couple to another stereo couple. 
We define the observation function ℎ by the successive operation of triangulation, transformation, and projection: 
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𝑏 is the baseline, ie. the distance between the left and right cameras in meter. 𝑓 is the focal length of the cameras in pixels. 𝑢 is 
composed of the left and right pixel coordinates relative to the images centers. Exponential map is used to parameterize the rotation 



R. We can rewrite this observation function from (2) in a more concise way using 𝑥 as the state variable that includes the rotation 
parameters and the translation t. We also show the noise that are added on the pixel coordinates. 
 

y = (𝑦 + γଵ, 𝑦 + γଶ) = h(𝑢 + γଷ, 𝑢 + γସ, 𝑥) = h(𝑢, 𝑥)    (3) 
 
The observation dimension is 4 and the state variable dimension is 6. We see that we have both additive noise γଵ and γଶ and non-
additive noise γଷ and γସ. This is quite rare in Kalman filtering. However, this is not very complicated. Since Kalman equations are 
available for both additive and non-additive noise and the noises are independent, one can easily find the solution which is summing 
the contribution of the additive and non-additive noise. To this end, the gradients of the observation function needs to be computed: 
 

     𝐻 =
డ(௨,௫)

డ௫
   and   𝑀 =

డ(௨,௫)

డ௨
      (4) 

 
and we assume that the noise on the pixel coordinates are independent and of same intensity, Γ =  α 𝐼ସ௫ସ then the Kalman update 
equations are: 

K = PିH(H. Pି. H + M. Γ. M + Γ)ିଵ     (5) 
xା = xି + K൫y − h(u, x)൯ 

𝑃ା = (I − KH)Pି 
 
After applying these equations, one can re-linearize with a better estimate and recompute the update. This is an Iterated Extended  
Kalman filter. However, to have a little speed-up, we convert the equations (5) to an information filter [25]: 

𝑃ା = ቀΣ(𝐻
்𝑊𝐻)ቁ

ିଵ

 

     xା = Pା ൬Σቀ𝐻
்𝑊(𝑦 − ℎ)ቁ൰      (6) 

with 𝑊 = (𝑀. Γ. M
் + Γ)ିଵ 

 
Using this composite noise covariance for 𝑊 instead of an identity noise covariance showed significant improvements. 
 
Monocular motion estimation 
 

 
Figure 3: Epipolar constraint. 

 
Here we will use a parametrization of the epipolar constraint. The epipolar constraint says that when a point is observed from two 
different cameras, the three vectors made of the directions of the features in the two cameras and the translation between the cameras 
must lie on the same plane. So let 𝑎் = (𝑢௫,ଵ, 𝑢௬,ଵ, 𝑓) and 𝑏் = (𝑢௫,ଶ, 𝑢௬,ଶ, 𝑓) be the feature directions in each camera frame. 
Then the constraint can be written with × the cross product operator, or [] the transformation matrix of the cross product operation: 
 

𝑎. (𝑡 ×  (𝑅 𝑏))  = 𝑎் [𝑡]𝑅 𝑏 = 0       (7) 
 
Since the scale cannot be observed, another parametrization of (7) with less freedom is used: 
 



ℎ(𝑢ଵ + 𝛾ଵ, 𝑢ଶ + 𝛾ଶ, 𝑥)  = 𝑎் 𝑅ଵ
்[𝑒௭]𝑅ଶ 𝑏 = ℎ(𝑢, 𝑥)  = 0     (8) 

 
𝑅ଵ and 𝑅ଶ are parametrized using temporary matrix rotation and exponential map and 𝑅ଶ is only parametrized around 𝑥 and 𝑦 [6]. 
This way the system is of five degrees. This corresponds to a six degrees of freedom pose without the scale. At each Gauss Newton 
iteration, the exponential maps are cumulated by left multiplication on the temporary rotation matrix and the exponential maps are 
reset to 0. This time the observation function is scalar but has the same number of inputs as previously. There are only non-additive 
noises, so the following weight must be used in equation (6): 
 

𝑊 = (𝑀. Γ. M
்)ିଵ      (9) 

 
While in stereo method approximating the noise covariance by the Identity only degrade results, for epipolar constraint, this 
approximation makes the system fail. In [6], this problem was treated by modifying the parametrization to weight more equally the 
observations. However these formulations remain suboptimal since the noise covariance was still neglected. Different 
parametrization tests showed that a simple parametrization with an optimal formulation remains the best solution. 
 
OUTLIER REMOVAL 
 
A big part of odometry is to find the good features and reject the outliers. As explained previously, a lot of frame to frame algorithms 
use randomized process to find inliers. The other solution is to use loss functions[26]. 
First, at the matching stage, computing a prediction zone based on the a priori covariance to restrict the matching area reduces the 
outlier number. Then, several loss functions were tested such as the Huber loss, the Cauchy loss, or a constant outlier ratio. For the 
stereo stage, a constant 30% ratio of outlier removal showed better results. For the epipolar constraint, the Cauchy loss showed a 
highest precision. This loss is computed relatively to the current median chi square test. However using only the features classified 
inliers from the stereo algorithm yields even better results for the epipolar constraint. This is an interesting result, that shows that 
even if a frame to frame stereo algorithm can be less precise on the rotation than a monocular algorithm, it can be better for outlier 
removal. 
 

 
Figure 4: Outlier removal, blue: 70% inliers, red: 30% outliers. 

 
INERTIAL COUPLING 
 
We also implemented coupling with inertial measurement from an accelerometer and a gyrometer. Thanks to the Euroc[24] dataset 
we successfully tested the benefits of imu coupling. Our coupling strategy is close to [4] where we do not take the full state of the 
Kalman filter as output but only the rotation. We believe that with higher grade imu, the translation output from the Kalman filter 
will be more precise than the direct sum of the odometry translations estimation. Here we use a full Kalman filter with gyro bias and 
accelerometers bias that can be extended to any other sensors such as GPS. At start the full biases from the gyroscope and the 
accelerometer are estimated without help, as well as the initial roll and pitch without performance loss as long as the initial roll and 
pitch are under 10 degrees, which is the case on all Euroc dataset. The Kalman filter also gives accurate uncertainty estimation (Fig. 
6 to 9), even when no inertial momentum unit is available. In such case the IMU is replaced with a general motion model. The same 
motion model for drone and automotive scenario is used. 



 
Figure 5: IMU and Stereo odometry coupling. 

 
FURTHER IMPROVEMENTS 
 
Rotation merging 
 
A significant improvement can be done using the method described in [4], That relies on computing the rotation evolution on three 
frames and more instead of two frames, this gives another value for the current delta rotation, and the different values for the delta 
rotation are merged using spherical interpolation: 
 

𝑅′ିଵ
 = (𝑅ିଵ

 )ଵ/ଶ(𝑅ିଶ
 (𝑅ିଶ

ିଵ)்)ଵ/ଶ     (10) 
 
Computing the rotation over three frames requires to redo the whole process of feature matching and outlier removal, increasing the 
computation time by two, for an improvement of about 10%. SOFT-SLAM[2] pushed the principle using one more frame but we 
found that it gives an insignificant improvement in our case. 
 
Keyframing 
 
Keyframing is a well-known component in visual SLAM that consists in selecting only the frames that are not redundant. In particular 
in monocular odometry or for relocalization this is a critical point. For frame to frame odometry, interest is limited, and the process 
of keyframe is simply to wait for a significant displacement to change the reference frame. For automotive scenario such as in KITTI, 
waiting for a significant displacement gives no real improvement. However for the drone dataset, this becomes more interesting, 
since the drone has long periods of rest and its displacement can be very slow sometimes. In this case, keyframing cuts the error 
about half. 
 
RESULTS 
 
We are currently at the second place on the KITTI stereo odometry benchmark. The first place is occupied by SOFT-SLAM which 
is a Simultaneous localization and mapping system. We currently have the best algorithm among the stereo visual odometry without 
loop closing on the KITTI benchmark. We also obtain our results with the smallest computing power.  
 
Table 2: Extract of the current KITTI Stereo odometry leaderboard. 

Stereo 
rank 

Method Translation Rotation 
(deg/m) 

Runtime Environment 

1 SOFT-SLAM 0.65% 0.0014 0.1s 2 core @ 2.5Ghz 

2 RADVO 0.82% 0.0018 0.07s 1 core @ 3.0Ghz 

3 LGSLAM 0.82% 0.0020 0.2s 4 core @ 2.5Ghz 

4 ROTROCC+ 0.83% 0.0026 0.25s 2 core @ 2.0Ghz 

5 GDVO 0.86% 0.0031 0.09s 1 core @ >3.5Ghz 

 



 
Figure 6: Results on KITTI dataset 00 (orange: ours , blue: ground truth, green : ORB-SLAM2, , black: uncertainty ellipses) 

 
We compare the output of our algorithm on the KITTI test dataset and the EuRoC dataset. Typical metric used for comparing 
performance are: 

 the relative metric which is a measure of percent of translation drift used in KITTI benchmark. This metric requires the 
ground truth to have precise rotations. The procedure for computing such a metric is freely available on the KITTI website. 

 The absolute metric, which is the global translation error after rotation and translation fitting between the ground truth and 
the odometry result. We used a package called evo for evaluating this metric which is freely available. 

 
We compare in Table 1 our result to state-of-the-art methods. The results from the different algorithms were retrieved from their 
respective paper. We checked anyway the evaluation metrics on ORBSLAM2 and obtained the expected results. We compare our 
visual odometry algorithm with two SLAM methods (ORB-SLAM2 and SOFT-SLAM) and a direct visual odometry method, 
GDVO[27].  
 
 
 
 
 
 
 



 
Table 1: comparison of RADVO with SOFT-SLAM, ORB-SLAM2 and GDVO on the KITTI dataset using the relative translational 
metric in percent and the absolute metric in meters. lc refers to dataset with loop closing available 

Relative and 
absolute error 

RADVO RADVO SOFT-
SLAM 

SOFT-
SLAM 

ORB-
SLAM2 

ORB-
SLAM2 

GDVO GDVO 
 

KIT.00 lc 0.52% 2.1m 0.66% 1.2m 0.70% 1.3m 0.71% 4.9m 
KIT.01 0.74% 3.8m 0.96% 3.0m 1.39% 10.4m 1.00% 5.2m 
KIT.02 lc 0.59% 4.3m 1.36% 5.1m 0.76% 5.7m 0.70% 6.1m 
KIT.03 0.92% 1.2m 0.70% 0.5m 0.71% 0.6m 0.75% 0.3m 
KIT.04 0.44% 0.3m 0.50% 0.4m 0.48% 0.2m 0.42% 0.2m 
KIT.05 lc 0.50% 1.4m 0.43% 0.8m 0.40% 0.8m 0.47% 1.8m 
KIT.06 lc 0.56% 1.4m 0.41% 0.5m 0.51% 0.8m 0.41% 1.5m 
KIT.07 lc 0.50% 0.8m 0.36% 0.3m 0.50% 0.5m 0.40% 0.8m 
KIT.08 0.88% 2.7m 0.78% 2.3m 1.05% 3.6m 0.88% 2.4m 
KIT.09 lc 0.82% 2.5m 0.59% 1.3m 0.87% 3.2m 0.77% 2.2m 
KIT.10 0.85% 1.0m 0.68% 0.9m 0.60% 1.0m 0.63% 1.1m 

 
In Table 1 we have the minimum worst-case error in both relative and absolute error metric. We can see that SOFT-SLAM and ORB-
SLAM2 have a lower absolute error on datasets with loop closing since they correct position on loop closing, but the ability to close 
loop does not influence a lot the relative metric. 
 

 
Figure 7: Results on KITTI dataset 01 (orange : ours , blue :ground truth, green : ORB-SLAM2 , black : uncertainty ellipses) 



Table 3: Results of RADVO compared with SOFT-SLAM, ORB-SLAM2, VIDSO and VI ORB-SLAM on the EuRoC dataset using the 
absolute metric in centimeters. Datasets marked with * indicate a needed stereo calibration correction remarked by SOFT-SLAM. 

Absolute 
error (cm) 

RADVO SOFT-
VO 

SOFT-
SLAM 

ORB-
SLAM2 

VIDSO VI ORB-
SLAM 

V1_01 7.4 8.9 4.2 3.5 5.9 2.7 
V1_02 8.9 9.7 3.4 2.0 6.7 2.8 
V1_03 10.1 10.1 5.7 4.8 9.6 - 
V2_01* 7.0 13.6 7.2 3.7 4.0 3.2 
V2_02* 4.8 27.6 6.9 3.5 6.2 4.1 
V2_03* 67.5 72.4 17.3 - 17.4 7.4 
MH_01 7.4 10.0 2.8 3.5 6.2 7.5 
MH_02 7.4 5.6 4.2 1.8 4.4 8.4 
MH_03 9.2 17.0 3.8 2.8 11.7 8.7 
MH_04 8.6 28.1 9.6 11.9 13.2 21.7 
MH_05 8.7 20.3 5.8 6.0 12.1 8.2 

 
Next evaluation on Table 3 were done using the absolute evaluation metric only as it is almost the only one used on Euroc dataset. 
Here we compare: 

 Three inertial aided stereo vision algorithm: RADVO (ours), SOFT-VO and SOFT-SLAM 
 Two inertial aided monocular visual system, VIDSO and VI ORB-SLAM 
 One stereo odometry algorithm: ORB-SLAM2 

We see again that the three methods that are able to close loops are the best performing (ORB-SLAM2, VI ORB-SLAM and SOFT-
SLAM). We also see that the Euroc dataset is slightly more challenging. It seems that to process the most difficult logs inertial unit 
are needed, and SLAM seems important to obtain convenient results on difficult dataset such as V2_03. 



 
Figure 8: Results on MH_01 dataset (orange : ours , blue :ground truth, black : uncertainty ellipses) 



 
Figure 9: Results on MH_05 dataset (orange : ours , blue : ground truth, black : uncertainty ellipses)  

 
CONCLUSION 
 
We developed a robust and accurate light weights visual odometry algorithm that have the interesting property of being deterministic. 
Experiments showed that the algorithm is general enough to produce state of the art results on automotive scenario and drone 
scenario. We also found the benefits of using an inertial momentum unit to improve results. We developed a strong and simple visual 
odometry algorithm that relies mainly on a direct derivation of probabilistic theory (ie. The Kalman filter) instead of dedicated 
algorithm for computer vision such as RANSAC. This has the overall consequence of making our algorithm robust. 
However our algorithm still have a margin of improvement since it is not able to relocalize. And it has some performance loss on 
most difficult dataset V2-03 of Euroc. Depending on the application of our proposed algorithm this may not be a problem. If our 
algorithm is used with higher grade imu like an Ellipse or less chaotic motion profile such as typical survey.  
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